Nonuniform Waveguide High-Pass Filters
with Extremely Steep Cutoff

CHARLES C. H. TANG

Summary—The design of a tapered waveguide high-pass filter
with very steep cutoff characteristics near the cutoff frequency and
very low reflections for frequencies beyond the cutoff is studied
on the basis of nonuniform or inhomogeneous transmission line
theory. The complex input reflection coefficient due to the presence
of a section of nonuniform waveguide is obtained through a new
approach by formulating the problem in terms of a pair of coupled
differential equations of forward wave and reflected wave with vary-
ing propagation constants and nonuniform coupling coefficients.
The solution of the reflection coefficient appears in the form of an
infinite series of integrals and can be reduced, for the case of very
gentle tapering to the simple form of Fourier integral previously
obtained by others.l:2 The general solution thus obtained is valid
even if 1) the tapering along the waveguide is not gradual, and 2) the
tapered section is terminated in an arbitrary impedance.

It is shown that among many illustrated simple trial functions of
impedance variation along the taper, the exponential function raised
to cosine square yields reflection characteristics with the steepest
rise near the cutoff and the lowest reflections for all frequencies be-
yond the cutoff. The steep rise near cutoff frequency is phenomenal,
since, for example, at the nominal cutoff of 55 kMc the reflection re-
duces to about —50 db within 0.18 kMec, i.e., the transition region
from the stop band to pass band at —50 db reflection is only about
0.33 per cent of cutoff.

The same design procedure for the high-pass filter can be used
for waveguide transitions of extremely wide band and very low re-
flections.

INTRODUCTION
MOST MICROWAVE filters hitherto designed

have been derived from methods of lumped-

element structures of low frequency by approxi-
mating the behavior of inductances and capacitances
by means of microwave components as building blocks
such as posts, irises, cavities, etc. These microwave
filters are intrinsically narrow-band devices and cannot
operate i1 a frequency region near the cutoff of the wave-
guide without excessive reflections. It becomes evident
that the application of such techniques tends to be in-
creasingly difficult in millimeter wave region because
of the stringent mechanical tolerances. Some different
approach has to be used.

The object of the present paper is to describe in a
long-distance millimeter waveguide system the design
of a filter that will allow propagation for waves above a
certain frequency of a very wide band and reject those
below this frequency; z.e., band splitting. 1t is therefore
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absolutely necessary that the filter 1) must have both
broad-band and high-pass characteristics and 2) must
operate near the cutoff frequency with very steep cutoff
characteristics in order to minimize the “guard band.”
A piece of uniform hollow-pipe waveguide is intrinsically
a high-pass filter for frequencies beyond the nominal
cutoff of the guide, but its reflection characteristic is not
steep enough to be of any use for band-splitting purpose.
On the other hand, when a piece of uniform waveguide
capable of propagating the whole wide band of fre-
quencies is properly tapered down at one end in its di-
mensions to the cutoff dimensions of the center fre-
quency of the band, it could become a high-pass filter®?
with desired reflection characteristics. The present paper
attempts to treat the problem on an analyvtic basis so
that an appropriately chosen profile of the high-pass
filter will yield the desired steepness of the reflection
characteristics near the cutoff. The design problem of
such high-pass filter for waveguides could be very much
complicated by mode conversion due to unavoidable
tapering of the guides. In order to circumvent this dil-
ficulty we will confine ourselves to the single-mode case
within the high-pass band of frequencies.

FORMULATION

The case of single-mode propagation in a waveguide
tapered to serve as a high-pass filter can be handled by
the analysis of nonuniform transmission lines or wave-
guides either on the basis of reflection coefficient or im-
pedance. For any transmission line system or single-
mode waveguide system, the basic differential equations
which describe the voltage and current along the line are

av
'Ex-; = — Z1(9C)I
[ T

where

V is the voltage across the transmission line,
I is the current in the transmission line,
Z is the series impedance per unit length of line,

and
V1 is the shunt admittance per unit length of line.
3G. L. Ragan, “Microwave Transmission Circuits,” M.I.T.

Rad. Lab. Ser., McGraw-Hill Book Co. Inc., New York, N. Y., vol.
9, pp. 643-645; 1948,
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For the lossless transmission line case Z;=jwLl and
Yi=jwC and for the lossless waveguide case, e.g.,
Zi=jou and ¥Yi=7(8%/wu) for TE modes, where § is the
propagation constant in the guide Since the line is non-
uniform, Z; and ¥; are in general functions of the dis-
tance along the guide.

The impedance looking into the line at any point
is by definition equal to

Z=— (2)

Differentiating (2) with respect to the distance x, and
making use of (1) we get the following first-order non-
linear equation® on impedance basis:

az ,

— = =7+ ViZ% (3)

dx
On the other hand, it is also possible to obtain a first
order nonlinear differential equation involving the re-
flection coefficient by defining the following quantities:

A 1
“_1/1’1 )

v =Z1Y1=jB

for lossless case (5)
Z— Z,

R="T2 6
757 (6)
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Fig. 1~—(a) Geometry of the symmetrical tapered
waveguide hOlter. (b) Ideal impedance varia-
tions along the tapered filter. (c) Depicted log-
qgithmic derivative of impedance along the
filter.

where

Z. is the nominal characteristic impedance,
v is the nominal propagation constant

and

R is the voltage reflection coefficient.

In general these quantities are again functions of posi-
tion along the guide. By proper manipulation of (1),
(2), (4), (5) and (6) we obtain the nonlinear differential
equation*’ in Riccatti form,

iR 2yR + 1(1 R?) dl Z,=0 (7N
Y - - —— 108, L, = U.
dx 2 dx &
For cases where R?<«1 everywhere on the line, the solu-
tion of (7) at the input terminal according to the co-
ordinate system of Fig. 1(a) is:

/71 d
R(—Z) = f—l<—2“ '(Ecloge Zc>
-exp|:—2fx’y(x')dx’} dx. (8)
!
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5 L. R. Walker and N. Wax, “Nonuniform transmission lines
and reflection coefficients,” J. Appl. Phys., vol. 17, pp. 1043-1046;
December, 1946.
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—1 —~1
and
k L 4 log, Z (13)
= — — 10g, c
2 ds 8

It is important to note that for nonuniform waveguides
both the characteristic impedance Z, and the propaga-
tion constant vy are sensitive functions of frequency and
position along the guide, whereas for nonuniform TEM
mode transmission lines, the characteristic impedance
Z.1s independent of frequency and the propagation con-
stant vy is independent of position and frequency.

The Ricatti equation (7) is exact, but at least for the
time being we are not able to obtain an exact solution for
the general case due to its nonlinear nature. In an at-
tempt to obtain a higher order approximate solution
than (8), we treat the problem with an approach differ-
ent from (1). If we let f and p be the amplitudes of the
forward and reflected wave respectively, the following
equatton is always true:

V=AZ:(f+p)
I= ! 9

where Z, is the characteristic impedance. Substitution
of (9) into (1) results in a pair of coupled differential
equations between the forward waves and reflected
waves as follows:

af 1 4
—=—9f= <_ ‘“IOgeZc>P
X

dx 2 d
ae ( L 4 | Z) 10
dx e 2 dx 0geZe )1 (10)

It is seen that the forward and reflected waves are
coupled through the term proportional to d/dx log, Z,,
which is the fractional change of characteristic im-

pedance Z, at the point in question in differential dis-
tance dx. The solution of the reflected wave p of the
system of (10) with normalized boundary conditions
Ff(—1=1and p(}) =0, using iteration procedure, appears
as the following series in integrals:

and
§ = f Gdx. (14)
-
The sought-for reflection coefficient at the input end is
p(—0) = K.. (15)

For a zeroth order approximation, (15) reduces to

¢ /1 d
Ty sy
p(=0) Il B
-exp [—Zj B(x)dx:| dx (16)
-1

which is identical to (8) as it should be. Accordingly,
we are now in a position to obtain any higher order ap-
proximate solutions from (11) by using more terms in
the series solution of (15). It is important to note that
the major contribution of this new approach lies in the
fact that in solving for the reflection coefficient p we no
longer have to impose the restriction p<<1 as we did in
solving (7). As long as p <1 holds, we can always obtain
higher order approximate solution by using more terms
in (15). In addition, we can also solve the problem when
the tapered section is terminated in an arbitrary im-
pedance of known reflection coefficient p;. In this case,
the boundary condition becomes p(l) =p; instead of the
matched load condition p(/) =0 and the constant K in
(11) appears as
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For cases where p<1, the zeroth order approximation of P 1 (18)

(17) is

' i1 d
p(—1) = plexp[—j /8(96)(1’,{! +f (— —-logeZc>
—1 -1 2 dx

exp l:——Zj fjlﬁ(;v)dx] dx.

DEsIGN

(17a)

The requirement of an ideal high-pass filter is dictated
by very steep cutoff characteristics near the cutoff
frequency and very low reflections for frequencies be-
yond the cutoff. 1f the waveguide flter is tapered
gradually we can use (16) as our starting point. Instead
of attempting the difficult problem of characterizing the
reflection coefficient p(—I) and synthesizing the taper,
we shall try judiciously to specify the impedance varia-
tions along the taper according to certain sim ple analytic
functional variations and choose a corresponding re-
flection characteristic acceptable for the problem in
question. We shall first investigate what are the ideal
impedance variations along a tapered waveguide for
frequencies near the cutoff and for frequencies beyond
the cutoff, so that appropriate types of trial functions
may be chosen intelligently. It is quite clear that char-
acteristic impedance variations along a symmetrical
taper should be such that at the cutoff frequency it has
a very steep jump at the center of the taper and becomes
low and flat “immediately” for the rest of the taper,
whereas at frequencies beyond the cutoff it should be
extremely low and “flat” all the way along the taper.
The variations are depicted in Fig. 1(b). For various
frequencies the corresponding logarithmic derivative of
impedance along the tapered filter should vary roughly
in shape as depicted in Fig. 1(c), and it is important to
note that the logarithmic derivative must have vanish-
ing or vanishingly small values near the ends of an
“ideal” filter. Information from Fig. 1(b) and 1(c)
should give us pertinent guides toward the correct
choice of possible trial functions for Z, along the tapered
section. The following Table I shows several possible
candidates of normalized simple trial functions and
their respective logarithmic derivatives.

The constants C and e in Table I are to be determined
with the aid of the normalized waveguide characteristic
impedance formula

Ao\ 2
V- G)
Ao
and the boundary conditions

a(0) = a1 and a(tl) = a..

These constants together with the equations for the
profile of the tapered waveguide filters are arranged in
Table 11. It is important to note that the profile of the
filter is not only a function of the distance along the
filter but also a function of the parameter X\,, which is
the free space wavelength. Knowing that we cannot
have a mechanically flexible filter for various A\,’s we
have to choose an appropriate N\, and thereby fix the
mechanical profile of the filter according to that particu-
lar \op. To choose a particular \,, is equivalent to fixing
arbitrarily the respective impedance levels along the
filter for all frequencies. The particular mechanical
profile as dictated by choosing the particular \,, should
be such that the impedance level at the filter center rises
to infinity very steeply for the cutoff frequency and
drops very quickly to very low values for frequencies
immediately beyond cutoff. It is quite evident that the
choice of \,, will decidedly determine the steepness of
the reflection characteristics near the cutoff. This is
confirmed by theoretical calculations to be shown later
in figures for reflection characteristics. The information
furnished by the logarithmic derivative of impedance
along the tapered filter should be most valuable in
selecting “ideal” trial functions {or Z, and we therefore
plot the d/dx log. Z, curves of all the functions in Table
I in Fig. 2. Fig. 2(a) and 2(b) are obtained by choosing
a particular frequency (namely \,) at 55.1425 kMc near
the cutoff frequency for circular TEy mode at 535 kMc;
i.e., choosing the particular parameters C and € by

making
)\ 2
(1 - —”> = 0.005.
(112

From Fig. 2(a) and 2(b), we see that the impedance
variation along the taper in the form of an exponential
raised to cosine nth (n>2) power has vanishing log-
arithmic derivative at the taper ends and therefore
should be the most promising candidate for an “ideal”
filter, In the same way we might venture to say that the
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TABLE 1
Ze - 10ge Zc
x\? 2ex
(A) Gaussian C exp { — e (%) § ~
. . x n(7r — e)
(B) Cosine Raised to nth Power C cos® [(w — € % — ———>tan [(ﬂ- — e) —
. € 2£
(C) Delta Function C _2:_ e

T X nemw . x , T X
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2 1 By ! 2 1
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§ ¢ - e 1 s
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TABLE 1L
a=f(x) C €
(A) Gaussian . o gt 22
- . log. T
@’ 2 1/2 [(112 )\pz]m ] )
e G e[ G )]%(w)]
a2 \ai?—Np?
(B) Cosine Raised in nth Power
Ap ai . as*(a12—N,%) 1en
a= 5 5 Iy 2 sin [—2——— 3
1_*42:7)\{;_7__ [ai®— A2 ]V a1% (42— Np?)
a? cos®™ l:(ﬂ'—e) ] —’
Delta Functi
(C) elta Function . o 1
ag?— A2\ ) 2 Y INENS TN 12 2 NN , 172
T TR vl BEEY™]
[ % ( ) I: 111“—)\p -+ ot \/(01 P )(d )\1)) (a1 )\p ) o a12_)\p2
(D) Exponential Raised to Cos nth Power
az a1 S ast—N,?
n(T) (z) 1/2 I —— loge ( ¥__“—_>
’> ( ) 8 ¢ \/<(1’ 2__)\1’:1) dz o _>\p
- (2|
MO
az
(E) Exponential Raised to Delta Function Solution of
A —1/€ . 2y 0
= - P _me eg—i-e-’-l/(log &1/%‘)___”_9 =0
[1— (1_i‘i) exp 32 VO E— A2 @t oaxt—ny?
@m?

1 & Ew
?_52721?) :l

where Ap=

DN
)\ap for circular waveguides, where £, is the nth root of Bessel function J,, and X, —-E— for rectangular waveguides, where m is

the mode number in Hy,, and «a is the radius for circular waveguides or the width for rectangular waveguides.
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delta exponential function and delta function impedance
variations are the second and third choices respectively.
These conjectures have to be verified by comparison of
the reflection characteristics obtained by theoretical
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calculations using (16).

The theoretical reflection coefficient of the trial func-
tions in Table I for the particular \,, that fixes the

mechanical profile of the filter are respectively:
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Evidently, all these integrals have to be integrated nu-
merically, although (19C) for delta function appears to be
a little simpler than the rest. Attention is called to the
fact that (19) yields only the reflection coefficient for
the particular frequency corresponding to A,,. Making
use of (16) and (18), we can obtain for any frequency the
input reflection coefficient of a tapered filter of a specific
mechanical profile a =f(\,,, x) by the following equation

(-1 lf’[ A2 dl :|
—]) = — —log. @
P 2J_a?— N\ dx &

ey e

kmn
A =—2A,.
27

where

With the aid of the first column of Table 11, @ =f(\op, %),
d/dx log, a can be obtained as a known function of x and
of the parameter A\, = kn,./27 Aop, where A, is that par-
ticular free space wavelength which fixes the mechanical
profile of the tapered waveguide filter. For example, for
a delta function impedance variation along the sym-
metrical filter, the shape of the filter is expressed from
Table I1 by the following equation:

x2+€2l2 2-1—1/2
a=n}1—-{— 21
{ (aﬂﬂ -
where
a1 fas? — N, 1/2 —1/2
L
[ 23 (7/12 — >\p2
and
)\ 21 —1/2
- fi-())"
ai
Combining (20) and (21), we have
-0
(= 1 ()\,, >2fl a
) = — R S A SR
P Cb\ N/ It ()\>2
a
Ar T/ A\
-exp[—]—f ,! 1 — (—) dx] dx. (22)
Ao 1 a

Eq. (22) can be integrated numerically for any fre-
quency. The various impedance-variation trial functions
of Table I have the respective input reflection coef-
ficients at any frequency as follows:
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e /N\2 p!
.....l = — | — X?xe“jﬂ (C)dx
p(—1) i <M> .

n(r — € <>\>2
) =
p(—=1) " .
! x
. f X? \:tan (r — € ——:l e dy
1 21
(=D <)\>2flx2< ¥ ) jo ()
— — N e jeldy
P N Jo \e e en
(=1 ne7r()\>2le2<. x)
~l) = —{— sin 7 —
P 8\, J "7
T %
. (COS"_2 _ _,) e dx
2 1

(E) p(—1) = z2<l>2f’X2[—~——x ] ~widy (23)
=0 =aG0) ) e )

»

(A)

(B)

(©

(D)

where

X2 = (@ = (e — N (24)

and

glx) = %fjA/l - (—(t—)zdx.

For N,=M\,; (23) reduce identically to (19) as they
should. We shall not evaluate (23A) and (23B), since
the trial functions involved in these integrals most likely
will yield inferior reflection characteristics in comparison
with the others according to Fig. 2(a). Numerical inte-
gration of (23C), (23D) and (23E), however, will have
to be made for comparison purpose in order to verify the
validity of the information yielded by Fig. 2. It is per-
tinent to note that since the reflection characteristics
depend critically on the choice of the parameter A,, we
should pick an optimum X, to be used in (23) for com-
parison of trial functions. Evidently, all comparisons
made with the same “optimum” parameter A\, should
be more sensitive than those made with parameters
other than “optimum” one. For this purpose, numerical
integration of (23C) for delta function impedance varia-
tion is carried out for three values of the parameter A,;
namely

(25)

)\ 2
(1 — JL) = 0.0001, 0.005, and 0.05

ay

and is plotted in Fig. 3 for circular TEy; mode. As shown
in Fig. 3, the reflection characteristics for

Ap?
1 - —) = 0.0001
dlz
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Fig. 3—Reflection characteristics.

Fig. 4—Reflection characteristics.

Fig. 5—Reflected characteristic.
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Fig. 6—(a) Profiles of tapered filters. (b) Profiles of the tapered filters.

case is extremely steep near cutoff but the reflection at
the “second lobe” is not low enough. The reflection

characteristics for
)\ 2
(1 — —’!> = 0.05
(112

case is not steep enough and accordingly that for

)\ 2
(1 — J—) = 0.005
al”

case is the best among the three. Note that the

case may not be the “optimum?” but at least close to the
optimum for the tapered waveguide high-pass filter with
cutoff frequency at 55 kMc. Accordingly, (23D) and
(23E) are also numerically integrated for the case of

A2
(1 - ) = 0.005
012
and are respectively plotted in Figs. 4 and 5 for circular
TE(; mode. Comparison of Figs. 3, 4 and 5 confirms the

previous prediction that exponential functions raised to
cosine nth power with #>2 will yield ideal reflection

characteristics whereas the delta exponential function
and delta function may be considered as the second and
third choice respectively. In order to get some extra
information in choosing the trial functions for imped-
ance variations, the actual mechanical profiles of the
various filters are plotted in Fig. 6(a) and 6(b) according
to the first column of Table II for the case

)\ 2
(1 — JL) = 0.005
012

with cutoff frequency at 55 kMc. From a purely me-
chanical point of view. Fig. 6 also shows that the ex-
ponential function raised to cosine nth power with
n>2 also yields an ideal mechanical profile which has
continuous first derivatives at the ends of the tapered
filter.

It is obvious that mechanical profiles with slowly
varying continuous derivatives at the large end of the
tapered filter will introduce less mode conversion at high
frequencies, for which other modes are possible than
those with discontinuous derivatives. Accordingly, it be-
comes increasingly clear that the trial function in the
form of an exponential raised to cosine nth power (with
7> 2) is ideal from several points of view.

The next question is: For a prescribed requirement
what is the optimum # to be used in the raised cosine
exponential? Inspection of Fig. 6(b) indicates that
increasing # larger than three is in effect reducing the
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length of the filter. Investigation of (23) shows that the
reflection coefficient is roughly proportional to the in-
verse square of the length [ of the filter. Thus, reflection
level can always be reduced to meet a particular pre-
scription by increasing the length /. Accordingly, we can
say that increasing # larger than three in raised cosine
exponential should increase the reflection coefficient.
This is confirmed as shown in Fig. 4. We conclude,
therefore, that the exponential function raised to cosine
cube is the best in a frequency band where there is pos-
sible mode conversion, whereas the exponential function
raised to cosine square is the best in a frequency band
where there is no possible mode conversion.

Finally we compare the reflection characteristics of
a symmetrical whole filter with that of a nonsymmetri-
cal half-section filter. The reflection characteristics of a
half-section filter can be obtained also from (23) by re-
placing the upper limit / by zero. This is done for (23C)
for delta impedance variation with

}\ 2
<1 - —?1) = 0.005
(ll2

and is also plotted in Fig. 3 for comparison with the
symmetrical whole section. It is interesting to note that
the reflection of the symmetrical filter never exceeds
that of the nonsymmetrical filter section by 6 db, which
indicates that the reflections of the two half-sections
just add in phase. Of course, the peaks of the reflection
characteristics of the symmetrical filter represent the

Matching into Band-Pass

M. L. HENSEL, MEMBER, IEEE,

Summary—This paper describes a method for broad banding the
matching transition from a low-dispersion transmission line to a
high-dispersion iterated filter structure. A good match can be ob-
tained over essentially the entire pass band of the filter structure. To
accomplish this the band at the end of the structure is widened be-
yond both nominal cutoff frequencies. It is narrowed down to the
regular structure bandwidth in a taper extending over a few filter
elements. In the comb structure used for traveling wave masers, a
return loss of 20 db (VSWR =1.2) or better is realized over 90 per
cent of the pass band with a taper including four comb fingers.
Several examples of suitable taper designs are given. Each of these,
however, requires empirical adjustment in order to produce an
optimum match.
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complete cancellations. We also see that the steepness
of the reflection characteristics for the symmetrical
whole section is much greater than that of the non-
symmetrical half-section as shown in Fig. 3.

CONCLUSIONS

In designing a tapered waveguide high-pass filter,
it is found that the logarithmic derivative of the im-
pedance variations along the taper for a frequency near
the cutoff can yield the most needed information in de-
termining the mechanical profile of a filter that will meet
the prescribed requirements. Among many illustrated
simple trial functions of impedance variations along the
tapered filter, the exponential function raised to cosine
square gives reflection characteristics with the steepest
rise near the cutoff and the lowest reflection for all fre-
quencies beyond the cutoff. The steep rise of the reflec-
tion characteristics near the cutoff is phenomenal, since,
for example, at the nominal cutoff of 55 kMc the reflec-
tion reduces to about —50 db within 0.18 kMec.
Finally we should note that the same design procedure
for the high-pass filter can be used for waveguide transi-
tions of extremely wide band and very low reflections.

ACKNOWLEDGMENT

The author wishes to thank Miss N. Shellenberger for
her consistent and patient interest and assistance in
carrving out the computations.

Transmission Structures

anp E. O. SCHULZ-DuBOIS

INTRODUCTION

HE MATCHING transition from a coaxial trans-
Tmission line to the comb-type slow-wave structure

as used in traveling wave masers! -2 shows a number
of features which may be considered typical for the
matching situation encountered with other band-pass
filter structures. 1) Generally the shape of the matching
element is derived empirically. Here it is a preshaped
wire as shown in Fig. 1(a). The extra inductance intro-
duced by the loop in the wire is essential in this match-
ing scheme. 2) A transition to a uniform slow-wave

PR, W. DcGrasse, E. O. Schulz-DuBois and H. E. D. Scovil,
Bell Syst. Tech. J., “The three-level solid state traveling wave-maser,”
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