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Summary—The design of a tapered waveguide high-pass filter

with very steep cutoff characteristics near the cutoff frequency and

very low reflections for frequencies beyond the cutoff is studied

on the basis of nonuniform or inhomogeneous transmission line

theory. The complex input reflection coefficient due to the presence

of a section of nonuniform waveguide is obtained through a new

approach by formulating the problem in terms of a pair of coupled
differential equations of forward wave and reflected wave with vary-

ing propagation constants and nonuniform coupling coefficients.

The solution of the reflection coefficient appears in the form of an

infinite series of integrals and can be reduced, for the case of very

gentle tapering to the simple form of Fourier integral previously

obtained by others.12 The general solution thus obtained is valid

even if 1) the tapering along the waveguide is not gradual, and 2) the

tapered section is terminated in an arbitrary impedance.

It is shown that among many illustrated simple trial functions of

impedance variation along the taper, the exponential function raised

to cosine square yields reflection characteristics with the steepest

rise near the cutoff and the lowest reflections ;or all frequencies be-

yond the cutoff. The steep rise near cutoff frequency is phenomenal,

since, for example, at the nominal cutoff of 55 kMc the reflection re-

duces to about – 50 db within 0.18 kMc, i.e., the transition region

from the stop band to pass band at – 50 db reflection is only about

0.33 per cent of cutoff.

The same design procedure for the high-pass filter can be used

for waveguide transitions of extremely wide band and very low re-

flections.

INTRODUCTION

M

OST hl ICROWAVE filters hitherto designed

have been derived from methods of lumped-

element structures of low frequency by approxi-

mating the behavior of inductances and capacitances

by means of microwave components as building blocks

such as posts, irises, cavities, etc. These microwave

filters are intrinsically narrow-band devices and cannot

operate in a frequency region near the czltoff of the wave-

guide without excessive reflections. It becomes evident

that the application of such techniques tends to be in-

creasingly difficult in millimeter wave region because

of the stringent mechanical tolerances. Some different

approach has to be used.

The object of the present paper is to describe in a

long-distance millimeter waveguide s}-stem the design

of a filter that will allow propagation for waves above a

certain frequency of a very wide band and reject those

below this frequency; i.e., band splitting. It is therefore
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absolutely necessary that the filter 1) must have both

broad-band and high-pass characteristics and 2) must

operate near the cutoff frequency with very steep cutoff

characteristics in order to minimize the “guard band. ”

A piece of uniform hollow-pipe waveguide is intrinsically

a high-pass filter for frequencies beyond the nominal

cutoff of the guide, but its reflection characteristic is not

steep enough to be of any use for band-splitting purpose.

On the other hand, when a piece of uniform waveguide

capable of propagating the whole wide band of fre-

quencies is properly tapered down at one end in its di-

mensions to the cutoff dimensions of the center fre-

quency of the band, it could become a high-pass filter31

with desired reflection characteristics. The present paper

attempts to treat the problem on an analytic basis so

that an appropriately chosen profile of the high-pass

filter will yield the desired steepness of the reflection

characteristics near the cutoff. The design problem of

such high-pass filter for waveguides could be very much

complicated by mode conversion due to unavoidable

tapering of the guides. In order to circumvent this dif-

ficulty we will confine ourselves to the single-mode case

within the high-pass band of frequencies.

The case of single-mode propagation in a waveguide

tapered to serve as a high-pass filter can be handled by

the analysis of nonuniform transmission lines or wave-

guides either on the basis of reflection coefficient or im-

pedance. For any transmission line system or single-

mode waveguide system, the basic differential equations

which describe the voltage and current along the line are

dV
– – 21(X)1z–

dI
– J’,(.Y) v

d.v =

where

V is the voltage across the transmission line,

1 is the current in the transmission line,

Z, is the series impedance per unit length of line,

(1)

and

YI is the shunt admittance per unit length of line.

3 G. L. Ragan, “Microwave Transmission Circuits, ” M.I.T.
Rad. Lab. Ser., McGraw-Hill Book Co. Inc., New York, N. Y., vol.
9, pp. 643-64S ; 1948.
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For the lossless transmission line case ZI =jwL

F1 =jcoC and for the lossless waveguide case,

and

e.g. 9

ZI =jw~ and YI =j(/32/cop) for TE modes, where ~ is the

propagation constant in the guide Since the line is non-

uniform, Z1 and Y1 are in general functions of the dis-

tance along the guide.

The impedance looking into the line at any point

is by definition equal to

z=:. (2)

Differentiating (2) with respect to the distance x, and

making use of (1) we get the following first-order non-

linear equationl on impedance basis:

dZ
– ZI + Y,z~’.-z= (3)

On the other hand, it is also possible to obtain a first

order nonlinear differential equation involving the re-

flection coefficient by defining the following quantities:

.——,“

(4)

‘y = l/zl Yl =jp for lossless case (5)

z–z.
R=

Z+zc
(6)

Fig. l—(a) Geometry of the symmetrical tapered
wa~-egu ide filter. (b) Ideal impedance varia -
tions along the tapered filter. (c) Depicted log-
arithmic deri~ative of impedance along the
filter.

where

Z, is the nominal characteristic impedance,

~ is the nominal propagation constant

and

R is the voltage reflection coefficient.

In general these quantities are again functions of posi-

tion along the guide. By proper manipulation of (1),

(2), (4), (5) and (6) we obtain the nonlinear differential

equationA’5 in Riccatti form,

For cases where R-<<l everywhere on the line, the solu-

tion of (7) at the input terminal according to the co-

ordinate system of Fig. 1 (a) is:

.exp[-2J:7(.v)d.r]d.t. (8)

4 F. Bolinder, “Fourier transforms in the theory O( inhomogeneous
transmission lines, ” ~ram. Roy. Inst. Tech., SfockholnJ, vol. 48, pp.
1-84; January, 1951.

5 L. R. Walker and N. Wax, “ lNonuniform tm.nsmission lines
and reflection coefficients, ” J. APP1. Phys., vol. 17, pp. 1043-1046;
December, 1946.
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(11)

where

s1

~e-2'd~~+f;~e-2''f:~(*'''2''(r')J:~(x'')e-2''(`'')d"“““
A’ = ~——— (12)

1 +J::.-q: k(a/)e’J@(z’)dt’dx + . . .

and

Id
k=-Jog,Zc (13)

It is important to note that for nonuniform waveguides

both the characteristic impedance Z, and the propaga-

tion constant y are sensitive functions of frequency and

position along the guide, whereas for nonuniform TEM

mode transmission lines, the characteristic impedance

2. is independent of frequency and the propagation con-

stant y is independent of position and frequency.

The Ricatti equation (7) is exact, but at least for the

time being we are not able to obtain an exact solution for

the general case due to its nonlinear nature. In an at-

tempt to obtain a higher order approximate solution

than (8), we treat the problem with an approach differ-

ent from (l). If we let ~ and p be the amplitudes of the

forward and reflected wave respectively, the following

equation is always true:

V=v’z. (f+p)

I=*(f–p)
c

(9)

where Z, is the characteristic impedance, Substitution

of (9) into (1) results in a pair of coupled differential

equations between the forward waves and reflected

waves as follows:

df

(
Id

–’Yf– —
)

— loge 2. p
z= 2 dx

dp

(

Id

)
— loge 2, f.

dx ‘VP– ~dx
(lo)

It is seen that the forward and reflected waves are

coupled through the term proportional to d/dx log, Z,,

which is the fractional change of characteristic im-

pedance 2. at the point in question in differential dis-

tance dx. The solution of the reflected wave p of the

system of (10) with normalized boundary conditions

.f( – 1) = 1 and P(L)= 0, using iteration procedure, appears

as the following series in integrals:

and

s

x

%= /3dx. (14)
–1

The sought-for reflection coefficient at the input end is

p(–1) = K.. (15)

For a zeroth order approximation, (15) reduces to

w-,j~~~(.)d.]~~ (10

which is identical to (8) as it should be. Accordingly,

we are now in a position to obtain any higher order ap-

proximate solutions from (11) by using more terms in

the series solution of (15). It is important to note that

the major contribution of this new approach lies in the

fact that in solving for the reflection coefficient p we no

longer have to impose the restriction p<<l as we did in

solving (7). As long as p <1 holds, we can always obtain

higher order approximate solution by using more terms

in (15). In addition, we can also solve the problem when

the tapered section is terminated in an arbitrary im-

pedance of known reflection coefficient pr. In this case,

the boundary condition becomes p(l) =pt instead of the

matched load condition p(1) = O and the constant A“ in

(11) appears as
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For cases where p<< 1, the zeroth order approximation of

(17) is

‘(-’) ‘P’exp[-’f:”(’)d’l+ f:(+i’o’z’)

DESIGN

The requirement of an ideal high-pass filter is dictated

by very steep cutoff characteristics near the cutoff

frequency and very low reflections for frequencies be-

yond the cutoff. If the waveguide filter is tapered

gradually we can use (16) as our starting point. Instead

of attempting the difficult problem of characterizing the

reflection coefficient P( —1) and synthesizing the taper,

we shall try judiciously to specify the impedance varia-

tions along the taper according to certain simple analytic

functional variations and choose a corresponding re-

flection characteristic acceptable for the problem in

question. We shall first investigate what are the ideal

impedance variations along a tapered waveguide for

frequencies near the cutoff and for frequencies beyond

the cutoff, so that appropriate tvpes of trial functions

may be chosen intelligently. It is quite clear that char-

acteristic impedance variations along a symmetrical

taper should be such that at the cutclff frequency it has

a very steep jump at the center of the taper and becomes

low and ffat “immediately” for the rest of the taper,

whereas at frequencies beyond the cutoff it should be

extremelY low and “flat” all the wa~}’ along the taper.

The variations are depicted in Fig. 1 (b). For various

frequencies the corresponding logarithmic derivative of

impedance along the tapered filter should vary roughly

in shape as depicted in Fig. 1 (c), and it is important to

note that the logarithmic derivative must have vanish-

ing or vanish ingly small values near the ends of an

“ideal” filter. information from Fig. 1(b) and 1 (c)

should give us pertinent guides to,ward the correct

choice of possible trial functions for Z,, along the tapered

section. The following Table I shows several possible

candidates of normalized simple trial functions and

their respective logarithmic derivatives.

The constants C and e in Table I are to be determined

with the aid of the normalized waveguide characteristic

impedance formula

(17)

1
2.= — —.= (18)

/, -(:)

and the boundary conditions

a(0) = al and a(il) == az.

These constants together with the equations for the

profile of the tapered waveguide filters are arranged in

Table 11. It is important to note that the profile of the

filter is not only a function of the distance along the

filter but also a function of the parameter &, which is

the free space wavelength. Knowing thait we cannot

have a mechanically flexible filter for various X.’S we

have to choose an appropriate ~0 and thereb>’ fix the

mechanical profile of the filter according to that particu-

lar ~~~, To choose a particular &P is equivalent to fixing

arbitrarily the respective impedance levels along the

filter for all frequencies. The particular mechanical

profile as dictated by choosing the particular 1~. should

be such that the impedance level at the filter center rises

to infinity very steeply for the cutoff frequency and

drops very quickly to very low values for frequencies

immediately beyond cutoff. It is quite evident that the

choice of AOP will decidedly determine the steepness of

the reflection characteristics near the cut-off. This is

confirmed by theoretical calculations to be shown later

in figures for reflection characteristics. ‘The information

furnished by the logarithmic derivative of’ impedance

along the tapered filter should be most valuable in

selecting “ideal” trial functions for 2. and we therefore

plot the d/dx log, Z. curves of all the functions in Table

I in Fig. 2. Fig. 2 (a) and 2(b) are obtained by choosing

a particular frequency (namely AP) at 5.S. 1425 kfi~c near

the cutoff frequency for circular TEol mode at 55 kMc;

i.e., choosing the particular parameters C and 6 by

making

()1 – ~ ==0.005.
a12

From Fig. 2(a) and 2(b), we see that the impedance

variation along the taper in the form of an exponential

raised to cosine nth (n ~ 2) power has vanishing log-

arithmic derivative at the taper ends and therefore

should be the most promising candidate for an ‘(ideal)’

filter, In the same way we might venture to say that the
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TABLE I

~ loge z.
dx

———

(A) Gaussian

———

(B) Cosine Raised to nth Power

.——

(C) Delta Function

2.X
.—

p

-Y’ank”a?2(71-— e)
—

-y:(SinT;)(’Os”-’; 3(D)

(E)

Exponential Raised to Cos rzth Power

Exponential Raised to Delta Function

—

2#.x
— ————.

(w’ + “t’)’1[
)

11
Cexr)ll’’+k)’l!

a =~(t) c

(A) Gaussian
A=

10ge(3%31”)[al’–alg’]”
a= ————————7——7”

[’-expK) ‘“’[:> c:::)ll(’-:~)l’”
—————————————... ———————.———

(B) Cosine Raised in *Lth Power

—————————————————.

——— ——————————————————————.—

(C) Delta Function
x,.

[H%$’’’-’l’i’
a. ———_——

[’-K;)2[xa’’t+42(2wl-21’2
—————————. ——— —————————. ————

(D) Exponential Raised to Cos nth Power

<(a+ X1,’)

(E) Exponential Raised to Delta Function

x.

Solution of

k
where Afl = ;*; X.p for circular waveguides, where km. is the tzth root of Bessel function J~

whop
and Xp= —— for rectangular waveguides, where m is

2

the mode number in Hm., and a is the radius for circular waveguides or the width for rectangular waveguides.
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delta exponential function and delta function impedance

variations are the second and third clhoices respectively.

These conjectures have to be verified by comparison of

the reflection characteristics obtained by theoretical

calculations using (16).

The theoretical reflection coefficient of the trial func-

tions in Table I for the particular ha, that fixes the

mechanical profile of the filter are respectively:



306 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES hlay

Evidently, all these integrals have to be integrated nu-

merically, although (19C) for delta function appears to be ()
(A) P(–1) = ~ ~ 2~ ‘X’*e-j”fGjdx

a little simpler than the rest. Attention is called to the
D –t

fact that (19) yields only the reflection coefficient for

()

n(?’r — e) h 2

the particular frequency corresponding to ~.P. Making
(B) P(-J) = ~J ~

use of (16) and (18), we can obtain for any frequency the
9

input reflection coefficient of a tapered filter of a specific “s [ 1
zXz tan (T – e) ~ e–~’J(C)d.t

mechanical profile a =~(&P, x) by the following equation
–t

S[ 1
p(–1) =: z ~ ~log, a

2 _l a2–h’dx ‘c)‘(-z)‘(;)J:x2(x:e,l,)e-’g(

where

2T “

(J J:x’[(x:ei,)le-’y(”d’23)(E) P(–1) = d’ ~ 2

With the aid of the first column of Table II, a =~(~.,, x),

d/dx log, a can be obtained as a known function of x and where

of the parameter & = km./2r &P, where h~~ is that par-

ticular free space wavelength which fixes the mechanical X2 = (a’ – k,’)(a’ – 1’)-’ (24)

profile of the tapered waveguide filter. For example, for and

a delta function imnedance variation along the svm-,- .
metrical filter, the shape of the filter is expressed from

Table II by the following equation: g(x) =:’;~/l - (:y~.. (2,)

where

‘=[%z:)’’-’r’

and

c=‘[’-(9-”2

Combining (20) and (21), we have

[’- (911’2
.x

()

~2

l–—
a

(21) For & =XOP, (23) reduce identically to (19) as they

should. We shall not evaluate (23A) and (23 B), since

the trial functions involved in these integrals most likely

will yield inferior reflection characteristics in comparison

with the others according to Fig. 2(a). Numerical inte-

gration of (23 C), (23D) and (23 E), however, will have

to be made for comparison purpose in order to verify the

validity of the information yielded by Fig. 2. It is per-

tinent to note that since the reflection characteristics

depend critically on the choice of the parameter A,, we

should pick an optimum & to be used in (23) for com-

parison of trial functions. Evidently, all comparisons

made with the same “optimum 7’ parameter A? should

be more sensitive than those made with parameters

other than “optimum” one. For this purpose, numerical

integration of (23C) for delta function impedance varia-

tion is carried out for three values of the parameter &;

namely

()
1 – ~ = 0.0001, 0,005, and 0.05

(22)
a12

and is plotted in Fig. 3 for circular TEOl mode. As shown

Eq. (22) can be integrated numerically for any fre- in Fig. 3, the reflection characteristics for

quency. The various impedance-variation trial functions

of Table I have the respective input reflection coef-

ficients at any frequency as follows: ()
1 – ~ = 0.0001

alz
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Fig. 6—(a) Profiles of tapered filters. (b) Profiles of the tapered filters.

case is extremely steep near cutoff but the reflection at

the “second lobe” is not low enough. The reflection

characteristics for

()l–~ =0.05
alz

case is not steep enough and accordingly that for

(1-:)=000’
case is the best among the three. hTote that the

()1 – ~’: = 0.005
a12

case may not be the “optimum 7’ but at least close to the

optimum for the tapered waveguide high-pass filter with

cutoff frequency at 55 kL’Ic. Accordingly, (23D) and

(23E) are also numerically integrated for the case of

()1 – ~ = 0.005
a12

and are respectively plotted in Figs. 4 and 5 for circular

TEOI mode. Comparison of Figs. 3, 4 and 5 confirms the

previous prediction that exponential functions raised to

cosine nth power with n z 2 will yield ideal reflection

characteristics whereas the delta exponential function

and delta function may be considered as the second and

third choice respectively. In order to get some extra

information in choosing the trial functions for imped-

ance variations, the actual mechanical profiles of the

various filters are plotted in Fig. 6(a) and 6(b) according

to the first column of Table II for the case

()1 – ~ = 0.005
a12

with cutoff frequency at 55 kh~c. From a purely me-

chanical point of view. Fig. 6 also shows that the ex-

ponential function raised to cosine nth power with

n >2 also yields an ideal mechanical profile which has

continuous first derivatives at the ends of the tapered

filter.

It is obvious that mechanical profiles with slowly

varying continuous derivatives at the large end of the

tapered filter will introduce less mode conversion at high

frequencies, for which other modes are possible than

those with discontinuous derivatives. Accordingly, it be-

comes increasingly clear that the trial function in the

form of an exponential raised to cosine nth power (with

n > 2) is ideal from several points of view.

The next question is: For a prescribed requirement

what is the optimum n to be used in the raised cosine

exponential ? Inspection of Fig. 6(b) indicates that

increasing n larger than three is in effect reducing the
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length of the filter. Investigation of (23) shows that the

reflection coefficient is roughly proportional to the in-

verse square of the length 1 of the filter. Thus, reflection

level can always be reduced to meet a particular pre-

scription by increasing the length 1. Accordingly, we can

say that increasing n larger than three in raised cosine

exponential should increase the reflection coefficient.

This is confirmed as shown in Fig. 4. We conclude,

therefore, that the exponential function raised to cosine

cube is the best in a frequency band where there is pos-

sible mode conversion, whereas the exponential function

raised to cosine square is the best ill a frequency band

where there is no possible mode conversion.

Finally we compare the reflection characteristics of

a symmetrical whole filter with that of a nonsymmetri-

cal half-section filter. The reflection characteristics of a

half-section filter can be obtained also from (23) by re-

placing the upper limit 1 by zero. This is done for (23C)

for delta impedance variation with

()1 – ~ = 0.005
a12

and is also plotted in Fig. 3 for cc,mparison with the

s~-mrnetrical whole section. It is interesting to note that

the reflection of the symmetrical filter never exceeds

that of the nonsymmetrical filter section b}- 6 d~, which

indicates that the reflections of the two half-sections

just add in phase. Of course, the peaks of the reflection

characteristics of the symmetrical filter represent the

complete cancellations. We also see that the steepness

of the reflection characteristics for the symmetrical

whole section is much greater than that of the non-

sl,mmetrical half-section as shown in Fig. 3.

CONCI.USIONS

In designing a tapered waveguide high-pass filter,

it is found that the logarithmic derivative of the im-

pedance variations along the taper for a frequency near

the cutoff can yield the most needed information in de-

termining the mechanical profile of a filter that will meet

the prescribed requirements. Among man y illustrated

simple trial functions of impedance variations along the

tapered filter, the exponential function raised to cosine

square gives reflection characteristics with the steepest

rise near the cutoff and the lowest reflection for all fre-

quencies beyond the cutoff. The steep rise of the reflec-

tion characteristics near the cutoff is phenomenal, since,

for example, at the nominal cutoff of 55 khlc the reflec-

tion reduces to about –50 db within 0.18 kMc.

Finally we should note that the same design procedure

for the high-pass filter can be used for vvaveguide transi-

tions of extremely wide band and very low reflections.
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Matching
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into Band-Pass Transmission Structures

HENSEL, MEMBER, IEEE, AND E. O. SCHULZ-D~TBOIS

Summary—This paper describes a method for broad banding the

matching transition from a low-dispersion transmission line to a

high-dispersion iterated filter structure. A good match can be ob-

tained over essentially the entire pass band of the filter structure. To

accomplish this the band at the end of the structure is widened be-

yond both nominal cutoff frequencies. It is narrowed down to the

regular structure bandwidth in a taper extending over a few filter

elements. In the comb structure used for traveling wave masers, a

return loss of 20 db (VSWR = 1.2) or better is realized over 90 per

cent of the pass band with a taper including four comb fingers.

Several examples of suitable taper designs are given. Each of these,

however, requires empirical adjustment in order to produce an

optimum match.

Manuscript received November 1, 1963; revised February 17,
1964.

The authors are with Bell Telephone Laboratories, Inc., Murray
Hill, N. J.

INTRODCTCTION

T
HE MATCHING transition from a coaxial trans-

mission line to the comb-type slow-wave structure

as used in traveling wave rnasersl,2 shows a number

of features which may be considered t~~pical for the

matching situation encountered with other band-pass

filter structures. 1) Generally the shape of the matching

element is derived empirically. Here it i:s a preshaped

wire as shown in Fig. 1(a). The extra inductance intro-

duced by the loop in the wire is essential ‘in this match-

ing scheme. 2) A transition to a uniform slow-wave

1 R. IV. DcGrasse, E. O. Schulz- DuBois and H. E. D. Scovil,
BelJ .S’ySt.Tech. J., “The three-le~-el solid state traveling wave-maser}”
vol. 38, pp. 305–334; hlarch, 1959.

2 M. L. Hensel and E. B. Treaty (to be publishec[).


